Usefulness of contrast-enhanced ultrasonography in daily clinical practice: A multicenter study in Spain

aRadiology Department, Barcelona Clinic Hospital, Barcelona, Spain
bRadiology Department, Puerta De Hierro Hospital, Madrid, Spain
cRadiology Department, Basurto Hospital, Bilbao, Spain
dRadiology Department, Reina Sofia Hospital, Córdoba, Spain
eRadiology Department, Dr. Peset Hospital, Valencia, Spain
fRadiology Department, Nuestra Señora Candelaria Hospital, Sta. Cruz de Tenerife, Spain
gRadiology Department, Río Hortega Hospital, Valladolid, Spain
hDigestive Department, Virgen de la Arrixaca Hospital, Murcia, Spain
iNeurology Department, La Mancha Centro General Hospital, Ciudad Real, Spain
jRadiology Department, León Hospital, León, Spain
kRadiology Department, Canarias La Laguna University Hospital, Sta. Cruz de Tenerife, Spain
lDigestive Department, Virgen de la Salud Hospital, Toledo, Spain
mRadiology Department, Puerta Del Mar Hospital, Cádiz, Spain
nRadiology Department, Josep Trueta Hospital, Girona, Spain
oRadiology Department, Carlos Haya Hospital, Málaga, Spain
pRadiology Department, Donostia Hospital, San Sebastián, Spain
qRadiology Department, Virgen Del Rocio Hospital, Sevilla, Spain

Received 19 June 2009; accepted 3 November 2009
Available on Internet 30 December 2009

Abstract

Objectives: We aimed to determine whether the use of ultrasonographic contrast agents improves the diagnostic accuracy of ultrasonography (US).

Material and methods: We carried out a prospective multicenter study in 42 hospitals. We included 1786 patients with inconclusive US; 84.9% of the inconclusive studies were abdominal US (including studies of the liver, kidneys, spleen, and other sites), 6.2% were studies of the...
Introduction

Ultrasound is an imaging technique that is most frequently used to evaluate abdominal, musculoskeletal and vascular diseases. However, in a radiology department daily practice, ultrasound findings are not specific enough to make a definitive diagnosis. Duplex Doppler ultrasound provides valuable information on vascularization,\(^1\) since it permits confirmation of vascular patency, the direction and velocity of flow, and may, occasionally, contribute to the characterization of focal lesions.\(^2\) However, its usefulness in detection of slow flow or flow in deep vascular structures is limited, and it cannot be used to adequately detect tumor or parenchymal microvasculature.\(^1,3\) When ultrasound does not permit a conclusive diagnosis, it is usually necessary to use other imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), or to perform a biopsy or needle aspiration to reach a definitive diagnosis.\(^4,6\)

The appearance of ultrasound contrast agents composed of gaseous micro-bubbles stabilized with other substances, has revolutionized ultrasound diagnosis for many diseases.\(^7,9\) In Europe, two contrast agents are approved for radiological use: Levovist (Schering, Germany), which is made up of air with galactose and palmitic acid as surfactant agents, and SonoVue (Bracco, Italy), which is composed of sulfur hexafluoride in a phospholipid capsule. The low solubility

peripheral vessels, 4.3% were breast studies, and 4.6% were other studies. We evaluated the type of contrast-enhanced US (color Doppler or contrast-specific method), type of contrast agent, dose and number of doses, and type of administration (bolus or infusion). We evaluated whether the findings at contrast-enhanced US improved the diagnostic accuracy of unenhanced US and whether they enabled a conclusive diagnosis to be reached.

Results: The contrast agent SonoVue was used in 99.9% of the studies; a single dose of contrast agent was used in 84.8%, and the contrast agent was administered in bolus in 98.5%. Contrast-enhanced US improved the diagnostic accuracy in 91.6% of cases and enabled a conclusive diagnosis in 69.2%. The best diagnostic accuracy was obtained in the supraaortic vessels, where a definitive diagnosis was reached in 95.4% of cases, followed by the abdominal area, with a conclusive diagnosis in 72.6% of cases.

Conclusions: The use of contrast-enhanced US significantly improved the diagnostic accuracy of US and enabled a conclusive diagnosis in most cases.

© 2009 SERAM. Published by Elsevier España, S.L. All rights reserved.
and greater stability of sulfur hexafluoride (SonoVue) allow studies to be performed in real time, when used gently to avoid destruction of the micro-bubbles. Its primary use is in characterizing focal liver lesions, follow-up of tumors after percutaneous treatment, and evaluating parenchymal perfusion of different organs, including trauma, infection, and ischemic conditions. Various multicenter studies with large patient cohorts have already demonstrated the excellent diagnostic accuracy of contrast ultrasound for characterization of focal hepatic lesions, but to our knowledge, no multicenter study has yet evaluated the usefulness and diagnostic accuracy of contrast ultrasound for general practice. The objective of this study is to describe how contrast ultrasound is routinely used in Spain and to evaluate whether contrast sonography increases the diagnostic accuracy of baseline ultrasound studies as well as their capacity to yield a definitive diagnosis.

Materials and methods

Patients. In this multicenter study performed in 42 Spanish hospitals, which we called the CEUS study, 1,786 patients were included; of those patients, 886 were men (53.6%) and 767 were women (46.4%), with an average age of 59.8 years (range, 14-93 years). Only patients with a non-diagnostic or inconclusive baseline ultrasound were included. Of these patients, a contrast ultrasound study was performed on 1,683 patients (94.2%). The rest (103 patients) did not undergo contrast ultrasound for the following reasons: performance of another diagnostic technique (83 patients, 80.6%), patient’s decision (16 patients, 15.5%), or contraindications (10 patients, 9.7%, due to severe heart or respiratory disease). The study did not require specific informed consent because only patients who had received a contrast ultrasound according to the normal diagnostic guidelines and protocols of each center were included.

Ultrasound. All patients who participated in the study underwent an ultrasound with intravenous contrast administration. The ultrasound studies were performed with Toshiba equipment in 46% of cases (Aplio platform in 37.6%, Xario in 8.4%), Siemens equipment in 21% of cases (Sequoia in 11%, Antares in 7.1%, and others in 2.9%), Philips equipment in 29.9% of the cases (IU22 in 9.7%, HDI 5000 in 8.4%, and others in 2.8%), General Electric in 11.9% of cases (Logic 7 in 7.2%, Logic 9 in 4.7%), and Esaote in 0.2% of cases.

Variables analyzed. The following variables were analyzed on baseline ultrasound: characteristics of the structures explored and why the initial ultrasound was not conclusive (multiple-choice questionnaire). On contrast ultrasound, the following parameters were evaluated: type of contrast ultrasound (color Doppler or specific contrast method), type of contrast used, dosage and number of doses, type of administration (bolus or infusion), and time needed to perform the study. From the results obtained by contrast ultrasound, we evaluated whether it had higher diagnostic accuracy compared to the baseline ultrasound, yielded a definitive or conclusive diagnosis and detected more lesions. When evaluating whether the contrast exam was conclusive, we only included patients with histologically or cytologically confirmed diagnoses, with a diagnosis achieved with some other imaging modality (CT or MRI) considered “gold standard”, or with contrast ultrasound studies that met the criteria of enhancement previously accepted as conclusive in the medical literature. Finally, the operator’s and patient’s satisfaction with the scan were evaluated, on a scale of 0 to 3, where 0 = bad, 1 = fair, 2 = good, and 3 = very good.

Data analysis. All the analysis were performed using the SPSS 12.0 statistical program (SPSS, Chicago, IL). Descriptive analysis was performed for both qualitative and quantitative variables. Qualitative variables were analyzed using absolute and percent frequencies, while quantitative variables were studied using the mean, medium, standard deviation, minimum, maximum, and confidence intervals. To compare groups, the Student’s t-test was used for normally distributed variables (Mann-Whitney U test for non-parametric variables), and the chi-square test or Fisher’s exact test was used for discrete variables. The significance level was established at p < 0.05.

Results

Initial baseline ultrasound. Concerning to the initial baseline ultrasound, table 1 lists the area or structures explored, with the abdominal area being the most frequent (84.9% of cases), especially the liver (71.2% of cases), followed by the kidney (10% of cases). Regarding the reasons that made ultrasound examination not conclusive, the most frequent cause was the presence of a lesion that could not be definitively identified by ultrasound (23.1% of cases), followed by non-evaluable or inconclusive vascularization (table 2).

Contrast ultrasound. Technique. Regarding the type of contrast ultrasound, the results were as follows: in 93.3% of cases (1,514 patients) a “specific contrast mode” was used, while in 6.7% (109 patients), color Doppler ultrasound was used (the type used for 60 patients is unknown). The contrast used was SonoVue in 99.9% of cases. In the only case in which SonoVue was not used, Levovist was administered, and a color Doppler ultrasound was used to evaluate vascular patency. The most frequently used dosages were 2.4-2.5 ml (64.9%) and 4.8-5.0 ml (18.2%). For the majority of patients (84.8%), only one dose was administered. For 15%, two doses were administered, and for the remaining patients (0.2%), more than two doses were injected. The two most frequent reasons for using two or more doses were to study several lesions (59.4%) and an inconclusive study with one dose (33.1%). In 98.5% of patients, the method of administration was through a contrast bolus, vs. infusion for the remaining (1.5%). The average time used to complete the ultrasound study was seven minutes.

Contrast ultrasound. Findings. In table 3, we show the definitive diagnoses obtained in the study; the most frequent lesions were hepatocarcinomas (20%), metastasis (17.1%), and hepatic hemangiomas (13.3%). In studies of focal lesions, contrast ultrasound allowed for better characterization of the lesion in 87.9% of cases, better delineation of the lesion in 83.9% of cases and generation of a differential diagnosis in 84.9% of cases. Contrast ultrasound was also able to detect more lesions as well as smaller lesions (fig. 1). Regarding its
usefulness, in 91.6% of cases, contrast ultrasound increased the accuracy of the baseline ultrasound. This increase in accuracy was greater for neurological studies (98.2%), followed by the abdomen (92.8%), lymph nodes (84.8%), and to a lesser extent, the breast (66.7%) (table 4). In addition, in 69.2% of cases, contrast ultrasound enabled to make a definitive diagnosis with certainty; without it, a conclusive diagnosis could be reached in only 30.8% of cases. When the results were analyzed with respect to the anatomical areas most frequently explored (table 5), we found that 95.4% of neurological studies obtained a conclusive diagnosis, as well as 73.6% of abdominal scans (73.6% hepatic, 71.6% kidney (fig. 2), 61.5% spleen, and 59.3% pancreas). However, a conclusive diagnosis was obtained in only 20.4% of lymph node studies and in 13.2% of breast studies.

Finally, when degree of satisfaction was examined, in 85.5% of studies, the operator's degree of satisfaction was good or very good, while in 98.2% of cases, the patient's satisfaction with the exam was also good or very good.

Discussion

Our study shows that contrast ultrasound resolves the majority of inconclusive ultrasound studies, not merely increasing diagnostic accuracy, but also yielding a conclusive diagnosis, as occurred with 69.2% of the patients included in our study. Reaching a definitive diagnosis using contrast ultrasound has advantages over using other
imaging techniques; these advantages include availability, few contraindications (only patients with severe cardiac disease), absence of ionizing radiation, no contraindication for patients with nephropathy, and reduction of time to diagnosis.8,24,25

The most frequent indications for contrast ultrasound in our study were characterization of focal hepatic lesions and evaluation of the response to percutaneous treatment of focal hepatic lesions.8,26 Because of its high sensitivity for detecting microvasculature, contrast ultrasound identifies the enhancement patterns of the most frequently focal hepatic lesions, as has been described in other studies.27,28 In two recent multicenter studies in which 1,328 and 1,034 hepatic nodules were studied using contrast ultrasound21,22 to differentiate between benign and malignant tumors, a sensitivity of 95.8\% and specificity of 83.1\% were reached by Strobel et al.,22 and a sensitivity of 79.4\% and specificity of 88.1\% were reported by Tranquart et al.21. Furthermore, contrast ultrasound was more accurate to establish whether a percutaneously treated lesion showed residual tumor (persistent enhancement) or a complete response (absence of enhancement) (fig. 3).14,29,30

Figure 1 A patient with hepatocellular carcinoma (HCC) for one year. a) On the baseline control ultrasound, two focal lesions were found in the right lobe that were suspicious for HCC, but this did not allow for a definitive diagnosis (arrows). b) Contrast ultrasonography showed enhancement in the arterial phase (arrows) in both lesions that was typical of HCC, and enabled detection of another tumor that was not shown in the baseline ultrasound (broken arrow). c) In the late phase, contrast had washed out of all three lesions, all of which appeared hypoechoic. The lesion in the anterior segment is shown (arrow). Findings were confirmed by CT and MRI (not shown).

<table>
<thead>
<tr>
<th>Area examined and increase in accuracy of the ultrasound</th>
<th>Abdomen</th>
<th>Breast</th>
<th>Brain</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1,307</td>
<td>50</td>
<td>107</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>(92.8%)</td>
<td>(66.7%)</td>
<td>(98.2%)</td>
<td>(84.8%)</td>
</tr>
<tr>
<td>No</td>
<td>101</td>
<td>25</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(7.2%)</td>
<td>(33.3%)</td>
<td>(1.8%)</td>
<td>(15.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>1,408</td>
<td>75</td>
<td>109</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area studied and diagnosis</th>
<th>Abdomen</th>
<th>Breast</th>
<th>Brain</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusive diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1,013</td>
<td>10</td>
<td>104</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(72.6%)</td>
<td>(13.2%)</td>
<td>(95.4%)</td>
<td>(26.6%)</td>
</tr>
<tr>
<td>No</td>
<td>383</td>
<td>66</td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>(27.4%)</td>
<td>(86.8%)</td>
<td>(4.6%)</td>
<td>(73.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>1,396</td>
<td>76</td>
<td>109</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>
the circle of Willis or to detect very low flow or velocities in sub-occlusive carotid stenosis, especially in obese patients or those with short necks. Contrast administration enables the detection of vascular patency and can confirm occlusion via color Doppler and specific contrast methods. In addition, it avoids the necessity for more invasive diagnostic tests such as angiography.33,34

Our study also supports the expansion of ultrasonography into other diagnostic areas. In our study the third indication has been suspicion of renal disease, fundamentally for complicated cysts and control of pyelonephritis, obtaining results similar to other studies.15,16,35,36

Despite the significantly increased use of contrast ultrasonography in all of the areas we examined, its diagnostic accuracy does not permit a conclusive diagnosis in some areas, particularly in the breast and lymph nodes (fig. 5). Few published studies have described the different enhancement patterns of contrast in the breast and lymph nodes, in part due to the recent incorporation of high-frequency transducers compatible with the specific contrast programs.37,38 Our results are in agreement with findings from other studies that found that contrast ultrasonography can detect tumor microvasculature but cannot differentiate between different tumors. Thus, in the breast, some initial
studies investigated the usefulness of duplex Doppler contrast ultrasonography and reported that malignant lesions more frequently exhibited hypervascularization (95% of malignant compared to 21% of benign lesions, according to Moon et al.,39 or 78.1% of malignant lesions compared to 35.3% of benign lesions, according to Martinez et al.40). The emergence of a second generation of contrast agents and improvements in ultrasound technology including the incorporation of specific methods of contrast has enabled not only the detection of vascularization, but also identification of the type of vascularization. Balleyguier et al.38 have reported that vascularization in malignant lesions is more prominent, that vessels are tortuous and irregular and, if uptake curves are obtained, that malignant lesions have earlier uptake and faster washout.

A theoretical limitation of our study is that no standardization for this technology exists, since different ultrasound equipment from different companies were used, with different dosages of contrast and different contrast protocols. Nevertheless, this theoretical limitation supports the contention that contrast ultrasonography can provide good results even with different techniques and dosages. In addition, our objective was to evaluate the diagnostic accuracy of contrast ultrasonography in the daily reality of the different hospitals that participated in the study. Another limitation was that not all of the focal lesions were confirmed through histology. However, diagnoses for the lesions that were included were confirmed using the established, accepted diagnostic criteria based on various imaging techniques.

In conclusion, we found that contrast ultrasonography significantly increased the diagnostic accuracy of ultrasound studies when the baseline study did not permit a definitive diagnosis, and a conclusive result was obtained in the majority of cases.

Conflict of interest

The CEUS study was sponsored by Laboratorios Farmacéuticos Rovi S. A. The authors of the study had total freedom
to access data and total independence to develop the manuscript. None of them maintain any professional relationship with Laboratorios Farmacéuticos Rovi S. A.

Acknowledgements

A complete list of the participating centers and investigators in the CEUS study: Puerta de Hierro Hospital of Madrid (Rafael Pérez Arangüena, Teresa Fontanilla Echeveste, Cristina Cortés León), Virgen de la Salud Hospital of Toledo (Rafael Ángel Gómez Rodriguez, Tomás Artaza Varasa, Concepción González de Frutos), La Paz Hospital of Madrid (Sonia Martín Chavarri, José María Segura Cabral, Carmen Comas Redondo), Clinic Hospital of Madrid (Julián Hernández Montero, Susana Martín Garre), Doce de Octubre Hospital of Madrid (Francisco Granados Caballero), Alcorcón Hospital (Ángel Bueno Horcajadas, Raúl de la Cruz Burgos, Teresa Hernández Cabrero, Miguel Ángel Trapero García, Silvia Pérez Rodrigo, Mónica Rebollo), Clinic Hospital of Valladolid (José M Herrero Izquierdo, José M Duro Roca), Río Hortega Hospital of Valladolid (María Jesús Velasco Marcos, Marcelino Mendo González), Segovia General Hospital (Diana Oquillas Izquierdo), Hospital of León (Leonor Hernández García), Virgen de la Arrixaca Hospital of Murcia (Manuel Reus Pintado, Carmen Garre Sánchez), Morales Meseguer Hospital of Murcia (José Ramón Olalla Muñoz, Juan Antonio López Corbalán, Enrique Girela Baena), Reina Sofia Hospital of Córdoba (Marisa Vignote Alguacil, Juan Francisco de Dios Hospital of Sevilla (María Angustias Ortiz Flores, Esther Ruiz García, Fernando Romero Gallego), Puerto Real Hospital of Cádiz (Antonio Escibano Moriana), Dr. Peset Hospital of Valencia (Tomás Ripollés González, María Jesús Martínez Pérez), General Hospital Alicante (Ana Pampliega Pérez).

References